Synergistic interactions between cannabinoid and opioid analgesics.
نویسنده
چکیده
Cannabinoids and opioids both produce analgesia through a G-protein-coupled mechanism that blocks the release of pain-propagating neurotransmitters in the brain and spinal cord. However, high doses of these drugs, which may be required to treat chronic, severe pain, are accompanied by undesirable side effects. Thus, a search for a better analgesic strategy led to the discovery that delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent of marijuana, enhances the potency of opioids such as morphine in animal models. In addition, studies have determined that the analgesic effect of THC is, at least in part, mediated through delta and kappa opioid receptors, indicating an intimate connection between cannabinoid and opioid signaling pathways in the modulation of pain perception. A host of behavioral and molecular experiments have been performed to elucidate the role of opioid receptors in cannabinoid-induced analgesia, and some of these findings are presented below. The aim of such studies is to develop a novel analgesic regimen using low dose combinations of cannabinoids and opioids to effectively treat acute and chronic pain, especially pain that may be resistant to opioids alone.
منابع مشابه
Synergistic interactions of endogenous opioids and cannabinoid systems.
Cannabinoids and opioids are distinct drug classes historically used in combination to treat pain. Delta(9)-THC, an active constituent in marijuana, releases endogenous dynorphin A and leucine enkephalin in the production of analgesia. The endocannabinoid, anandamide (AEA), fails to release dynorphin A. The synthetic cannabinoid, CP55,940, releases dynorphin B. Neither AEA nor CP55,940 enhances...
متن کاملCannabinoid-opioid interactions during neuropathic pain and analgesia.
Opiates and exogenous cannabinoids, both potent analgesics used for the treatment of patients with neuropathic pain, bind to and activate class A G-protein-coupled receptors (GPCRs). Several lines of evidence have recently suggested that opioid and cannabinoid receptors can functionally interact in the central nervous system (CNS). These interactions may be direct, such as through receptor hete...
متن کاملCannabis in cancer care.
Cannabis has been used in medicine for thousands of years prior to achieving its current illicit substance status. Cannabinoids, the active components of Cannabis sativa, mimic the effects of the endogenous cannabinoids (endocannabinoids), activating specific cannabinoid receptors, particularly CB1 found predominantly in the central nervous system and CB2 found predominantly in cells involved w...
متن کاملThe Canadian Consortium for the Investigation of Cannabinoids in Human Therapeutics
Chen, R. Z., R. R. Huang, et al. (2004). "Synergistic effects of cannabinoid inverse agonist AM251 and opioid antagonist nalmefene on food intake in mice." Brain Res 999(2): 227-30. Oral administration of the opioid antagonist nalmefene alone (up to 20 mg/kg) failed to show a significant effect on acute food intake in mice. However, combined oral dosing of nalmefene and subthreshold doses of AM...
متن کاملModulation of peripheral sensory neurons by the immune system: implications for pain therapy.
The concept that the immune system can communicate with peripheral sensory neurons to modulate pain is based mostly on documented interactions between opioid ligands and receptors. Such findings may have broad implications for the development of safer pain medication. Innovative strategies take into account that analgesics should be particularly active in pathological states rather than produci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Life sciences
دوره 74 11 شماره
صفحات -
تاریخ انتشار 2004